Rayleigh-Benard convection flow with liquid/solid phase transition in a low gravity field

نویسندگان

  • D. Mansutti
  • E. Bucchignani
  • M. M. Cerimele
چکیده

The presence of an icy crust covering several satellites of the solar system (e.g. Europa, the jovian satellite) suggested us to accomplish the numerical simulation of the Rayleigh-Benard convection flow of a horizontal layer of mushy water, covered at the top by its own ice and immersed in a low gravity field. The phase transition occurring at the ice/mushy water interface, with release/absorption of latent heat, is included in our study. Starting the simulation with ice and water at rest in a conductive temperature distribution, we pushed the computation forward enough to approach, possibly, the thermo-dynamical equilibrium. We adopt initial geometrical parameters resembling the present set-up of Europa's crust. As the changes undergoing on the satellite nowadays are imperceptible, the final computed configuration should recover the present dynamical and thermodynamical fields. We also provide the estimate of the amount of heat flowing up from the bottom of the domain that is from the inside of the planet, a quantity practically difficult to be measured even on Earth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition

In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...

متن کامل

Lattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution

In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass....

متن کامل

The Effect of Variable Properties on Rayleigh-Benard Convection in an Enclosure Filled with Al2O3-EG-Water Nanofluid

In this paper, the natural convection heat transfer of Al2O3-EG-water nanofluid in a rectangular cavity which is heated from the bottom and is cooled from the top has been investigated numerically. The governing equations for a Newtonian fluid have been solved numerically with a finite volume approach using the SIMPLER algorithm. The main focus of the current study is on the effects of variable...

متن کامل

Dynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow

The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...

متن کامل

Dynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow

The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008